Document clustering using GIS visualizing and EM clustering method
Yükleniyor...
Dosyalar
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
IEEE
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This paper uses expectation-maximization clustering algorithm and a simple multidimensional projection method for visualization and data reduction. The multidimensional data is projected into a 2D Cartesian coordinate system. We run EM and K-Means algorithms on the transformed data. The system uses Microsoft Spatial Data Base Engine as a GIS tool for visualization. We used Expectation-Maximization (EM) and K-Means clustering algorithms of the Microsoft Analysis Services. The simple multidimensional projection method used in this paper tries to preserve the similarity relationships in original datasets.
Açıklama
Full conference title: 2013 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) 19 - 21 June 2013, Albena, Bulgaria
Anahtar Kelimeler
GIS, Clustering, Performance Optimization
Kaynak
2013 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA)
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Doğdaş, T., Akyokuş, S. (2013). Document clustering using GIS visualizing and EM clustering method. In 2013 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) (pp. 1-4). Piscataway, NJ: IEEE. https://dx.doi.org/10.1109/INISTA.2013.6577647












