Document clustering using GIS visualizing and EM clustering method

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

IEEE

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This paper uses expectation-maximization clustering algorithm and a simple multidimensional projection method for visualization and data reduction. The multidimensional data is projected into a 2D Cartesian coordinate system. We run EM and K-Means algorithms on the transformed data. The system uses Microsoft Spatial Data Base Engine as a GIS tool for visualization. We used Expectation-Maximization (EM) and K-Means clustering algorithms of the Microsoft Analysis Services. The simple multidimensional projection method used in this paper tries to preserve the similarity relationships in original datasets.

Açıklama

Full conference title: 2013 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) 19 - 21 June 2013, Albena, Bulgaria

Anahtar Kelimeler

GIS, Clustering, Performance Optimization

Kaynak

2013 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA)

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Doğdaş, T., Akyokuş, S. (2013). Document clustering using GIS visualizing and EM clustering method. In 2013 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) (pp. 1-4). Piscataway, NJ: IEEE. https://dx.doi.org/10.1109/INISTA.2013.6577647

Onay

İnceleme

Ekleyen

Referans Veren