Synergic Exploitation of TCAD and Deep Neural Networks for Nonlinear FinFET Modeling

dc.contributor.authorKouhalvandi, Lida
dc.contributor.authorCatoggio, Eva
dc.contributor.authorGuerrieri, Simona Donati
dc.date.accessioned2024-12-16T19:34:44Z
dc.date.available2024-12-16T19:34:44Z
dc.date.issued2023
dc.departmentDoğuş Üniversitesien_US
dc.description20th International Conference on Smart Technologies, EUROCON 2023 -- 6 July 2023 through 8 July 2023 -- Torino -- 191482en_US
dc.description.abstractAccurate large-signal (LS) modeling of Fin Field-Effect Transistors (FinFETs) plays an important role in designing microwave circuits for the next generation of communication systems and quantum sensing. In this work we propose preliminary results on a novel approach to LS FinFET modeling, that translates the X-parameters from physical TCAD analysis into deep neural networks (DNNs). The proposed method includes two phases. First, the X-parameters of nonlinear active device are extracted trough accurate TCAD physical simulations. Then, a long short-term memory (LSTM)-based DNN is employed for ANN modelling, to reproduce the scattered waves for any given incident waves up to the 5th harmonic. Similarly to X-parameters, the proposed DNN model simulates the transistor behavior around the large-signal operating point. Unlike the original X-parameter method, though, the DNN approach can incorporate the dependency on bias or other technological and physical parameters in a seamless and numerically efficient way. Hence, once implemented into circuit simulators, it allows for faster and more accurate circuit design. © 2023 IEEE.en_US
dc.description.sponsorshipMinistero dell’Istruzione, dell’Università e della Ricerca, MIURen_US
dc.identifier.doi10.1109/EUROCON56442.2023.10198982
dc.identifier.endpage546en_US
dc.identifier.isbn978-166546397-3
dc.identifier.scopus2-s2.0-85168698093en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage542en_US
dc.identifier.urihttps://doi.org/10.1109/EUROCON56442.2023.10198982
dc.identifier.urihttps://hdl.handle.net/11376/5147
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofEUROCON 2023 - 20th International Conference on Smart Technologies, Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_20241215
dc.subjectDeep neural network (DNN)en_US
dc.subjectfin field-effect transistor (FinFET)en_US
dc.subjectlarge-signal modelingen_US
dc.subjectlong short-term memory (LSTM)en_US
dc.subjectpredicten_US
dc.subjectX-parameteren_US
dc.titleSynergic Exploitation of TCAD and Deep Neural Networks for Nonlinear FinFET Modelingen_US
dc.typeConference Objecten_US

Dosyalar