Synergic Exploitation of TCAD and Deep Neural Networks for Nonlinear FinFET Modeling
| dc.contributor.author | Kouhalvandi, Lida | |
| dc.contributor.author | Catoggio, Eva | |
| dc.contributor.author | Guerrieri, Simona Donati | |
| dc.date.accessioned | 2024-12-16T19:34:44Z | |
| dc.date.available | 2024-12-16T19:34:44Z | |
| dc.date.issued | 2023 | |
| dc.department | Doğuş Üniversitesi | en_US |
| dc.description | 20th International Conference on Smart Technologies, EUROCON 2023 -- 6 July 2023 through 8 July 2023 -- Torino -- 191482 | en_US |
| dc.description.abstract | Accurate large-signal (LS) modeling of Fin Field-Effect Transistors (FinFETs) plays an important role in designing microwave circuits for the next generation of communication systems and quantum sensing. In this work we propose preliminary results on a novel approach to LS FinFET modeling, that translates the X-parameters from physical TCAD analysis into deep neural networks (DNNs). The proposed method includes two phases. First, the X-parameters of nonlinear active device are extracted trough accurate TCAD physical simulations. Then, a long short-term memory (LSTM)-based DNN is employed for ANN modelling, to reproduce the scattered waves for any given incident waves up to the 5th harmonic. Similarly to X-parameters, the proposed DNN model simulates the transistor behavior around the large-signal operating point. Unlike the original X-parameter method, though, the DNN approach can incorporate the dependency on bias or other technological and physical parameters in a seamless and numerically efficient way. Hence, once implemented into circuit simulators, it allows for faster and more accurate circuit design. © 2023 IEEE. | en_US |
| dc.description.sponsorship | Ministero dell’Istruzione, dell’Università e della Ricerca, MIUR | en_US |
| dc.identifier.doi | 10.1109/EUROCON56442.2023.10198982 | |
| dc.identifier.endpage | 546 | en_US |
| dc.identifier.isbn | 978-166546397-3 | |
| dc.identifier.scopus | 2-s2.0-85168698093 | en_US |
| dc.identifier.scopusquality | N/A | en_US |
| dc.identifier.startpage | 542 | en_US |
| dc.identifier.uri | https://doi.org/10.1109/EUROCON56442.2023.10198982 | |
| dc.identifier.uri | https://hdl.handle.net/11376/5147 | |
| dc.indekslendigikaynak | Scopus | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | EUROCON 2023 - 20th International Conference on Smart Technologies, Proceedings | en_US |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.snmz | KA_20241215 | |
| dc.subject | Deep neural network (DNN) | en_US |
| dc.subject | fin field-effect transistor (FinFET) | en_US |
| dc.subject | large-signal modeling | en_US |
| dc.subject | long short-term memory (LSTM) | en_US |
| dc.subject | predict | en_US |
| dc.subject | X-parameter | en_US |
| dc.title | Synergic Exploitation of TCAD and Deep Neural Networks for Nonlinear FinFET Modeling | en_US |
| dc.type | Conference Object | en_US |












