Synergic Exploitation of TCAD and Deep Neural Networks for Nonlinear FinFET Modeling

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Institute of Electrical and Electronics Engineers Inc.

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Accurate large-signal (LS) modeling of Fin Field-Effect Transistors (FinFETs) plays an important role in designing microwave circuits for the next generation of communication systems and quantum sensing. In this work we propose preliminary results on a novel approach to LS FinFET modeling, that translates the X-parameters from physical TCAD analysis into deep neural networks (DNNs). The proposed method includes two phases. First, the X-parameters of nonlinear active device are extracted trough accurate TCAD physical simulations. Then, a long short-term memory (LSTM)-based DNN is employed for ANN modelling, to reproduce the scattered waves for any given incident waves up to the 5th harmonic. Similarly to X-parameters, the proposed DNN model simulates the transistor behavior around the large-signal operating point. Unlike the original X-parameter method, though, the DNN approach can incorporate the dependency on bias or other technological and physical parameters in a seamless and numerically efficient way. Hence, once implemented into circuit simulators, it allows for faster and more accurate circuit design. © 2023 IEEE.

Açıklama

20th International Conference on Smart Technologies, EUROCON 2023 -- 6 July 2023 through 8 July 2023 -- Torino -- 191482

Anahtar Kelimeler

Deep neural network (DNN), fin field-effect transistor (FinFET), large-signal modeling, long short-term memory (LSTM), predict, X-parameter

Kaynak

EUROCON 2023 - 20th International Conference on Smart Technologies, Proceedings

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Onay

İnceleme

Ekleyen

Referans Veren