Fuzzy-Petri-net reasoning supervisory controller and estimating states of Markov chain models

Yükleniyor...
Küçük Resim

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

IEEE

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Markov chain models are efficient tools for representing stochastic discrete event processes with wide applications in decision and control. A novel approach to fuzzy-Petri-net reasoning generated solution to initial or another state in Markov-chain models is proposed. Reasoning is performed by a fuzzy-Petri-net supervisory controller employing a fuzzy-rule production system design and a fuzzy-Petri-net reasoning algorithm, which has been developed and implemented in C++. The reasoning algorithm implements calculation of the degrees of fulfilment for all the rules and their appropriate assignment to places of Petri net representation structure. The reasoning process involves firing active transitions and calculating degrees of fulfilment for the output places, which represent propositions in the knowledge base, and determining of fuzzy-distributions for output variables as well as their defuzzified values. Finally, these values are transferred to assign the state of Markov-chain decision model in terms of transition probabilities.

Açıklama

Conference: IEEE 3rd International Conference on Computational Cybernetics, Victoria, MAURITANIA, APR 13-16, 2005.

Anahtar Kelimeler

Intelligent Machines, Decision Trees, Systems, Formulation

Kaynak

IEEE 3rd International Conference on Computational Cybernetics, 2005. ICCC 2005

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

DIMIROVSKI, G.M. (2005). Fuzzy-Petri-net reasoning supervisory controller and estimating states of Markov chain models. In I.J. RUDAS (ed.). IEEE 3rd International Conference on Computational Cybernetics, 2005. ICCC 2005, pp. 75-80. https://dx.doi.org/10.1109/ICCCYB.2005.1511552.

Onay

İnceleme

Ekleyen

Referans Veren