Spectral problems of a class of non-self-adjoint one-dimensional Schrodinger operators
Yükleniyor...
Dosyalar
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Acedemic Press
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper we investigate the one-dimensional Schrodinger operator L(q) with complex-valued periodic potential q when q is an element of L-1[0,1] and q(n) = 0 for n = 0, -1, -2, ..., where qn are the Fourier coefficients of q with respect to the system{e(iota 2 pi nx)}. We prove that the Bloch eigenvalues are (2 pi n + t)(2) for n is an element of Z, t is an element of C and find explicit formulas for the Bloch functions. Then we consider the inverse problem for this operator.
Açıklama
Veliev, Oktay A. (Dogus Author)
Anahtar Kelimeler
Hill Qperator, Spectrum, Inverse Problems
Kaynak
Journal of Mathematical Analysis and Applications
WoS Q Değeri
Scopus Q Değeri
Cilt
442
Sayı
2
Künye
Veliev, O. A. (2015). Spectral problems of a class of non-self-adjoint one-dimensional Schrodinger operators. Journal of Mathematical Analysis and Applications, 442(2), 1390-1401. https://dx.doi.org/10.1016/j.jmaa.2014.09.074












