Spectral problems of a class of non-self-adjoint one-dimensional Schrodinger operators

Yükleniyor...
Küçük Resim

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Acedemic Press

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this paper we investigate the one-dimensional Schrodinger operator L(q) with complex-valued periodic potential q when q is an element of L-1[0,1] and q(n) = 0 for n = 0, -1, -2, ..., where qn are the Fourier coefficients of q with respect to the system{e(iota 2 pi nx)}. We prove that the Bloch eigenvalues are (2 pi n + t)(2) for n is an element of Z, t is an element of C and find explicit formulas for the Bloch functions. Then we consider the inverse problem for this operator.

Açıklama

Veliev, Oktay A. (Dogus Author)

Anahtar Kelimeler

Hill Qperator, Spectrum, Inverse Problems

Kaynak

Journal of Mathematical Analysis and Applications

WoS Q Değeri

Scopus Q Değeri

Cilt

442

Sayı

2

Künye

Veliev, O. A. (2015). Spectral problems of a class of non-self-adjoint one-dimensional Schrodinger operators. Journal of Mathematical Analysis and Applications, 442(2), 1390-1401. https://dx.doi.org/10.1016/j.jmaa.2014.09.074

Onay

İnceleme

Ekleyen

Referans Veren