Study on TCP/AQM network congestion with adaptive neural network and barrier Lyapunov function
| dc.authorid | https://orcid.org/0000-0001-8766-6742 | en_US |
| dc.contributor.author | Wang, Kun | |
| dc.contributor.author | Liu, Yang | |
| dc.contributor.author | Liu, Xiaoping | |
| dc.contributor.author | Jing, Yuanwei | |
| dc.contributor.author | Dimirovski, Georgi M. | |
| dc.date.accessioned | 2019-11-11T22:04:19Z | |
| dc.date.available | 2019-11-11T22:04:19Z | |
| dc.date.issued | 2019 | en_US |
| dc.department | Doğuş Üniversitesi, Mühendislik Fakültesi, Kontrol ve Otomasyon Mühendisliği Bölümü | en_US |
| dc.description | Dimirovski, Georgi M. (Dogus Author) | en_US |
| dc.description.abstract | A novel network congestion algorithm is introduced for Transmission Control Protocol/Active Queue Management (TCP/AQM) system in this paper. The established TCP/AQM system is more accurate and general. Moreover, an adaptive congestion controller is designed by virtue of the Barrier Lyapunov Function (BLF), backstepping-like and Neural Networks (NNs) approximation techniques, by which the transient and steady-state performances on the tracking error can be pre-given and other signals of the closed-loop system also are verified to be semi-globally, uniformly and ultimately bounded. Finally, a comparison example is considered to demonstrate the feasibility and superiority of the presented scheme. | en_US |
| dc.identifier.citation | Wang, K., Liu, Y., Liu, X., Jing, Y., Dimirovski, G. M. (2019). Study on TCP/AQM network congestion with adaptive neural network and barrier Lyapunov function. Neurocomputing, 363, 27-34. https://doi.org/10.1016/j.neucom.2019.08.024. | en_US |
| dc.identifier.doi | 10.1016/j.neucom.2019.08.024 | en_US |
| dc.identifier.endpage | 34 | en_US |
| dc.identifier.issn | 0925-2312 | |
| dc.identifier.issn | 1872-8286 | |
| dc.identifier.other | 000484005300004 (WOS) | |
| dc.identifier.startpage | 27 | en_US |
| dc.identifier.uri | https://doi.org/10.1016/j.neucom.2019.08.024 | |
| dc.identifier.uri | https://hdl.handle.net/11376/3403 | |
| dc.identifier.volume | 363 | en_US |
| dc.institutionauthor | Dimirovski, Georgi M. | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartof | Neurocomputing | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
| dc.subject | TCP/AQM Network | en_US |
| dc.subject | Congestion Control | en_US |
| dc.subject | Barrier Lyapunov Function | en_US |
| dc.subject | Adaptive NN Control | en_US |
| dc.subject | Active Queue Management | en_US |
| dc.subject | Feedback Nonlinear-Systems | en_US |
| dc.subject | Dynamic Surface Control | en_US |
| dc.subject | Prescribed Performance | en_US |
| dc.subject | Tracking Control | en_US |
| dc.subject | AQM | en_US |
| dc.subject | Disturbances | en_US |
| dc.subject | Controller | en_US |
| dc.subject | Stability | en_US |
| dc.subject | Design | en_US |
| dc.title | Study on TCP/AQM network congestion with adaptive neural network and barrier Lyapunov function | en_US |
| dc.type | article | en_US |












