Performance Prediction of Power Amplifiers for the Extended Bandwidth via Neural Networks

dc.contributor.authorKouhalvandi, Lida
dc.contributor.authorOzoguz, Serdar
dc.contributor.authorGuerrieri, Simona Donati
dc.date.accessioned2024-12-16T19:45:43Z
dc.date.available2024-12-16T19:45:43Z
dc.date.issued2023
dc.departmentDoğuş Üniversitesien_US
dc.description31st IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUL 05-08, 2023 -- Istanbul Tech Univ, Ayazaga Campus, Istanbul, TURKEYen_US
dc.description.abstractThis paper presents the optimization methodology for modeling the power amplifier (PA) with the aid of deep neural network (DNN). In this paper we propose an impressive approach leading to extrapolate frequency responses of the PA, where the long short-term memory (LSTM) DNN is employed. The presented method models the PA accurately in terms of scattering parameters, gain, output power and efficiency. This approach tackles the problem of dependency to the engineer experience and reduces the challenges in achieving large frequency band. All the modeling process is performed with the combination of electronic design automation tool and numerical analyzer where automated environment is created. For validating the proposed method, one PA is designed and modelled for the range frequency of 1 to 2.3 GHz. The DNN is firstly trained for the half of the bandwidth and later, the modeled PA is used for predicting the extended frequency band.en_US
dc.description.sponsorshipIEEE,TUBITAK BILGEM,Turkcellen_US
dc.identifier.doi10.1109/SIU59756.2023.10224038
dc.identifier.isbn979-8-3503-4355-7
dc.identifier.issn2165-0608
dc.identifier.scopus2-s2.0-85173453254en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/SIU59756.2023.10224038
dc.identifier.urihttps://hdl.handle.net/11376/5410
dc.identifier.wosWOS:001062571000243en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2023 31st Signal Processing and Communications Applications Conference, Siuen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_20241215
dc.subjectDeep neural network (DNN)en_US
dc.subjectextended frequency responseen_US
dc.subjectlong short-term memory (LSTM)en_US
dc.subjectpower amplifier (PA)en_US
dc.subjectpredicten_US
dc.titlePerformance Prediction of Power Amplifiers for the Extended Bandwidth via Neural Networksen_US
dc.typeConference Objecten_US

Dosyalar