So-haTRed: A Novel Hybrid System for Turkish Hate Speech Detection in Social Media With Ensemble Deep Learning Improved by BERT and Clustered-Graph Networks

dc.authoridGurbuz, Mustafa Zahid/0000-0002-5125-6378
dc.contributor.authorAltinel, Ayse Berna
dc.contributor.authorBaydogmus, Gozde Karatas
dc.contributor.authorSahin, Sema
dc.contributor.authorGurbuz, Mustafa Zahid
dc.date.accessioned2024-12-16T19:45:56Z
dc.date.available2024-12-16T19:45:56Z
dc.date.issued2024
dc.departmentDoğuş Üniversitesien_US
dc.description.abstractHate speech on online platforms, characterized by discriminatory language targeting individuals or groups, poses significant harm and necessitates robust detection methods for digital safety. Recognizing the ease with which individuals can engage in such speech online, our study delved into detecting Turkish hate speech using deep learning algorithms and natural language processing techniques. We developed innovative methodologies, including a k-means+textGCN classifier with BERT, which marked the first such attempt in the literature, and explored multiple vector representation techniques such as Term Frequency, Word2Vec, Doc2Vec, and GloVe. Additionally, we investigated various learning algorithms and natural language processing techniques, conducting thorough evaluations on three distinct Turkish hate speech datasets. Notably, our newly presented algorithm exhibited superior performance, achieving an impressive F1-score of 87.81% on the 9K dataset, showcasing advancements in hate speech detection and contributing to a safer online environment.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUEBITAK) [120E187]; Marmara University [Bilimsel Arascedil;timath;rma Projeleri Koordinasyon Ofisi (BAPKO)} [10784]en_US
dc.description.sponsorshipThis work was supported in part by the Scientific and Technological Research Council of Turkey (TUEBITAK) under Grant 120E187, and in part by Marmara University [Bilimsel Ara & scedil;t & imath;rma Projeleri Koordinasyon Ofisi (BAPKO)] under Grant 10784.en_US
dc.identifier.doi10.1109/ACCESS.2024.3415350
dc.identifier.endpage86270en_US
dc.identifier.issn2169-3536
dc.identifier.scopus2-s2.0-85196480581en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage86252en_US
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2024.3415350
dc.identifier.urihttps://hdl.handle.net/11376/5537
dc.identifier.volume12en_US
dc.identifier.wosWOS:001256191600001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Accessen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzKA_20241215
dc.subjectGraph convolutional networken_US
dc.subjecthate speech detectionen_US
dc.subjectmachine learningen_US
dc.subjectnatural language processingen_US
dc.subjecttoxic speechen_US
dc.subjectTurkish social mediaen_US
dc.titleSo-haTRed: A Novel Hybrid System for Turkish Hate Speech Detection in Social Media With Ensemble Deep Learning Improved by BERT and Clustered-Graph Networksen_US
dc.typeArticleen_US

Dosyalar