Calendar-based short-term forecasting of daily average electricity demand

dc.authoridTR143826en_US
dc.authoridTR154068en_US
dc.contributor.authorKumru, Mesut
dc.contributor.authorKumru, Pınar Yıldız
dc.date.accessioned2017-01-24T06:43:15Z
dc.date.available2017-01-24T06:43:15Z
dc.date.issued2015
dc.departmentDoğuş Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.descriptionKumru, Mesut (Dogus Author) -- Conference full title: International Conference on Industrial Engineering and Operations Management (IEOM), 2015 3-5 March 2015, Hyatt Regency, Dubai, United Arab Emirates.en_US
dc.description.abstractShort-term electricity demand forecast becomes more and more important due to recent deregulation of electricity market in Turkey. It is affected mainly from several factors that are working days, weekends, feasts, festivals, and temperatures. In the study, contribution of these factors to the consumption is to be analyzed and modeled with nonlinear (quadratic) regression models. First, the variation in Turkey's daily electricity consumption for the years of 2012 and 2013 is determined with respect to actual weather temperatures and calendar events. Then, nonlinear regression models are constructed separately for the demand function of weekends, weekdays, public holidays (feast and festivals), and for the total daily averages. The models are tested on the actual calendar data of the year 2014 for its twelve months period. Mean absolute percentage errors are calculated and compared for each of the regression models. The results indicate that the calendar-based short-term forecasting model slightly outperforms the noncalendar-based forecasting model, and seems more reliable in forecasting the short-term electricity demand.en_US
dc.description.sponsorshipASQ; IEEE; BOEING; Emirates; Lawrence Technol Univ; Saudi Aramco; Informs; PROLIM; SIEMENS; Univ New Brunswicken_US
dc.identifier.citationKumru, M., & Kumru, P. Y. (2013). Calendar-based short-term forecasting of daily average electricity demand. In 2015 International Conference on Industrial Engineering and Operations Management (pp. 1-5) Piscataway, NJ: IEEE. https://dx.doi.org/10.1109/IEOM.2015.7093940en_US
dc.identifier.doi10.1109/IEOM.2015.7093940
dc.identifier.endpage5en_US
dc.identifier.isbn9781479960651
dc.identifier.isbn9781479960644
dc.identifier.other000380587100245 (WOS)
dc.identifier.other15091353 (INSPEC)
dc.identifier.scopus2-s2.0-84931043079en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage1en_US
dc.identifier.urihttps://dx.doi.org/10.1109/IEOM.2015.7093940
dc.identifier.urihttps://hdl.handle.net/11376/2939
dc.identifier.wosWOS:000380587100245en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorKumru, Mesut
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2015 International Conference on Industrial Engineering and Operations Managementen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectShort-Term Electricity Demanden_US
dc.subjectCalendar Eventsen_US
dc.subjectNonlinear Regressionen_US
dc.titleCalendar-based short-term forecasting of daily average electricity demanden_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
kumru_2015.pdf
Boyut:
380.24 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Yayıncı Sürümü

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.51 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: