Machine-Based Learning System: Classification of ADHD and non-ADHD participants

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

IEEE

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Attention-deficit/hyperactivity disorder (ADHD) is the most frequent diagnosis among children who are referred to psychiatry departments. Although ADHD was discovered at the beginning of the 20th century, its diagnosis is confronted with many problems. In this paper, a novel classification approach that discriminates ADHD and non-ADHD groups over the time frequency domain features of ERP recordings is presented. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) was used to obtain best discriminating features. When only three of these features were used the accuracy of classification reached to 98 A,, and use of six features further improved classification accuracy to 99.5%. The proposed scheme was tested with a new experimental setup and 100% accuracy is obtained. The results were obtained using RCV. The classification performance of this study suggests that TFHA can be employed as a core component of the diagnostic and prognostic procedures of various psychiatric illnesses.

Açıklama

25th Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2017 -- Antalya, TURKEY

Anahtar Kelimeler

Attention-Deficit/Hyperactivity Disorder (Adhd), Time-Frequency Hermite Atomizer, Machine Learning, Classification, Feature Selection, Support Vector Machine-Recursive Feature Elimination (Svm-Rfe)

Kaynak

2017 25th Signal Processing and Communications Applications Conference (Siu)

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Onay

İnceleme

Ekleyen

Referans Veren