A neural network clustering algorithm for the ATLAS silicon pixel detector

dc.authoridTR3959en_US
dc.contributor.authorÇetin, Serkant Ali
dc.contributor.authorATLAS Collaboration
dc.date.accessioned2015-08-06T10:53:08Z
dc.date.available2015-08-06T10:53:08Z
dc.date.issued2014-09
dc.departmentDoğuş Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümüen_US
dc.description.abstractA novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.en_US
dc.identifier.citationAad, G, Abbott, B., Abdallah, J., Abdel Khalek, S., Abdinov, O., Aben, R. ... ATLAS Collaboration. (2014). A neural network clustering algorithm for the ATLAS silicon pixel detector. Journal of Instrumentation, Volume 9, 33p. https://dx.doi.org/10.1088/1748-0221/9/09/P09009.en_US
dc.identifier.doi10.1088/1748-0221/9/09/P09009
dc.identifier.endpage33en_US
dc.identifier.issn1748-0221
dc.identifier.other000343281300046 (WOS)
dc.identifier.scopus2-s2.0-84907683450en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage1en_US
dc.identifier.urihttps://dx.doi.org/10.1088/1748-0221/9/09/P09009
dc.identifier.urihttps://hdl.handle.net/11376/1924
dc.identifier.volume9en_US
dc.identifier.wosWOS:000343281300046en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorÇetin, Serkant Ali
dc.language.isoenen_US
dc.publisherIOP Publishingen_US
dc.relation.ispartofJournal of Instrumentationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectParticle Tracking Detectorsen_US
dc.subjectParticle Tracking Detectors (Solid-State Detectors)en_US
dc.titleA neural network clustering algorithm for the ATLAS silicon pixel detectoren_US
dc.typeArticleen_US

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
scetin_2014.pdf
Boyut:
1.39 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Yayıncı Sürümü

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.51 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: