Neural networks and search for minimum defectiveness in molding operation in ceramic industry
Yükleniyor...
Dosyalar
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
IEEE
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This study is to be conducted in a ceramics production plant where the highest product defectiveness occurs in the molding shop of the plant. There are a number of factors that affect the amount of product defectiveness. The purpose is to search for a set of factor treatment conditions which provide the minimum defectiveness performance in the shop. Artificial Neural Network (ANN) method was used to realize the purpose. Based on the statistical analysis, the ANN approach is found to be reliable in predicting the amount of defectiveness that depends on various factors.
Açıklama
Kumru, Mesut (Dogus Author) -- Conference full title: 2011 International Symposium on Innovations in Intelligent Systems and Applications (INISTA 2011) Istanbul, Turkey, 15 - 18 June 2011
Anahtar Kelimeler
Artificial Neural Networks, Ceramic Molding Process, Experiment Design, Metaheuristics
Kaynak
2011 International Symposium on Innovations in Intelligent Systems and Applications (INISTA)
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Kumru, M. (2011). Neural networks and search for minimum defectiveness in molding operation in ceramic industry. In 2011 International Symposium on Innovations in Intelligent Systems and Applications (INISTA) (pp. 335-339). Piscataway, NJ: IEEE. https://dx.doi.org/10.1109/INISTA.2011.5946140












