Complexity versus integrity solution in adaptive fuzzy-neural inference models

Yükleniyor...
Küçük Resim

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

John Wiley & Sons

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This paper explores aspects of computational complexity versus rule reduction and of integrity preservation versus optimality index, which have become an issue of considerable concern in learning techniques for adaptive fuzzy inference models. In control-oriented applications of adaptive fuzzy inference systems, implemented as fuzzy-neural networks, a balanced observation of these conflicting requirements appeared rather important for a good yet feasible application design. The focus is confined to a family of adaptive fuzzy inference systems that can be interpreted as a partially connected multilayer feedforward neural networks employing Gaussian activation function. The knowledge base rules are designed implying the connections are a priori fixed, and then the respective strengths adapted on the grounds of input and output data sets. Information granulation plays a significant role too. These as well as membership-function parameters ought to be adapted in a learning-training process via the minimization of an appropriate error function.

Açıklama

Dimirovski, Georgi M. (Dogus Author)

Anahtar Kelimeler

Systems, Networks, Identification, Rules, Logic, Reduction, Sets

Kaynak

International Journal of Intelligent System

WoS Q Değeri

Scopus Q Değeri

Cilt

23

Sayı

5

Künye

Dimirovski, G. M. (2008). Complexity versus integrity solution in adaptive fuzzy-neural inference models. International Journal of Intelligent System, 23(5), 556-572. https://dx.doi.org/10.1002/int.20283

Onay

İnceleme

Ekleyen

Referans Veren