Nash Q-learning multi-agent flow control for high-speed networks
| dc.authorid | TR142348 | en_US |
| dc.contributor.author | Jing, Yuanwei | |
| dc.contributor.author | Li, Xin | |
| dc.contributor.author | Dimirovski, Georgi M. | |
| dc.contributor.author | Zheng, Yan | |
| dc.contributor.author | Zhang, Siying | |
| dc.date.accessioned | 2016-12-23T13:40:54Z | |
| dc.date.available | 2016-12-23T13:40:54Z | |
| dc.date.issued | 2009-06 | |
| dc.department | Doğuş Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
| dc.description | Dimirovski, Georgi M. (Dogus Author) -- Conference full title: American Control Conference, 2009 : ACC '09 ; 10 - 12 June 2009, St. Louis, MO, USA ; Annual Conference of the American Automatic Control Council. | en_US |
| dc.description.abstract | For the congestion problems in high-speed networks, a multi-agent flow controller (MFC) based on Q-learning algorithm conjunction with the theory of Nash equilibrium is proposed. Because of the uncertainties and highly time-varying, it is not easy to accurately obtain the complete information for high-speed networks, especially for the multi-bottleneck case. The Nash Q-learning algorithm, which is independent of mathematic model, shows the particular superiority in high-speed networks. It obtains the Nash Q-values through trial-and-error and interaction with the network environment to improve its behavior policy. By means of learning procedures, MFCs can learn to take the best actions to regulate source flow with the features of high throughput and low packet loss ratio. Simulation results show that the proposed method can promote the performance of the networks and avoid the occurrence of congestion effectively. | en_US |
| dc.identifier.citation | Jing, Y., Li, X., Dimirovski, G. M., Zheng,Y. & Zhang, S. (2009). Nash Q-learning multi-agent flow control for high-speed networks. In 2009 American Control Conference, ACC '09, (pp. 3304-3309) Piscataway, NJ: IEEE. https://dx.doi.org/10.1109/ACC.2009.5160220 | en_US |
| dc.identifier.doi | 10.1109/ACC.2009.5160220 | |
| dc.identifier.endpage | 3309 | en_US |
| dc.identifier.isbn | 9781424445233 | |
| dc.identifier.isbn | 9781424445240 | |
| dc.identifier.isbn | 9781424445233 | |
| dc.identifier.issn | 0743-1619 | |
| dc.identifier.issn | 2378-5861 | |
| dc.identifier.other | 10775553 (INSPEC) | |
| dc.identifier.scopus | 2-s2.0-70449640078 | en_US |
| dc.identifier.scopusquality | Q3 | en_US |
| dc.identifier.startpage | 3304 | en_US |
| dc.identifier.uri | https://dx.doi.org/10.1109/ACC.2009.5160220 | |
| dc.identifier.uri | https://hdl.handle.net/11376/2853 | |
| dc.identifier.wos | WOS:000270044901217 | en_US |
| dc.identifier.wosquality | N/A | en_US |
| dc.indekslendigikaynak | Web of Science | en_US |
| dc.indekslendigikaynak | Scopus | en_US |
| dc.institutionauthor | Dimirovski, Georgi M. | |
| dc.language.iso | en | en_US |
| dc.publisher | IEEE | en_US |
| dc.relation.ispartof | 2009 American Control Conference, ACC '09 | en_US |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | High-speed Networks | en_US |
| dc.subject | Nash Equilibrium | en_US |
| dc.subject | Mathematical Model | en_US |
| dc.subject | Traffic Control | en_US |
| dc.subject | Bandwidth | en_US |
| dc.subject | Control Systems | en_US |
| dc.subject | Quality of Service | en_US |
| dc.subject | Uncertainty | en_US |
| dc.subject | Mathematics | en_US |
| dc.subject | Throughput | en_US |
| dc.title | Nash Q-learning multi-agent flow control for high-speed networks | en_US |
| dc.type | Conference Object | en_US |












