Nash Q-learning multi-agent flow control for high-speed networks

dc.authoridTR142348en_US
dc.contributor.authorJing, Yuanwei
dc.contributor.authorLi, Xin
dc.contributor.authorDimirovski, Georgi M.
dc.contributor.authorZheng, Yan
dc.contributor.authorZhang, Siying
dc.date.accessioned2016-12-23T13:40:54Z
dc.date.available2016-12-23T13:40:54Z
dc.date.issued2009-06
dc.departmentDoğuş Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.descriptionDimirovski, Georgi M. (Dogus Author) -- Conference full title: American Control Conference, 2009 : ACC '09 ; 10 - 12 June 2009, St. Louis, MO, USA ; Annual Conference of the American Automatic Control Council.en_US
dc.description.abstractFor the congestion problems in high-speed networks, a multi-agent flow controller (MFC) based on Q-learning algorithm conjunction with the theory of Nash equilibrium is proposed. Because of the uncertainties and highly time-varying, it is not easy to accurately obtain the complete information for high-speed networks, especially for the multi-bottleneck case. The Nash Q-learning algorithm, which is independent of mathematic model, shows the particular superiority in high-speed networks. It obtains the Nash Q-values through trial-and-error and interaction with the network environment to improve its behavior policy. By means of learning procedures, MFCs can learn to take the best actions to regulate source flow with the features of high throughput and low packet loss ratio. Simulation results show that the proposed method can promote the performance of the networks and avoid the occurrence of congestion effectively.en_US
dc.identifier.citationJing, Y., Li, X., Dimirovski, G. M., Zheng,Y. & Zhang, S. (2009). Nash Q-learning multi-agent flow control for high-speed networks. In 2009 American Control Conference, ACC '09, (pp. 3304-3309) Piscataway, NJ: IEEE. https://dx.doi.org/10.1109/ACC.2009.5160220en_US
dc.identifier.doi10.1109/ACC.2009.5160220
dc.identifier.endpage3309en_US
dc.identifier.isbn9781424445233
dc.identifier.isbn9781424445240
dc.identifier.isbn9781424445233
dc.identifier.issn0743-1619
dc.identifier.issn2378-5861
dc.identifier.other10775553 (INSPEC)
dc.identifier.scopus2-s2.0-70449640078en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage3304en_US
dc.identifier.urihttps://dx.doi.org/10.1109/ACC.2009.5160220
dc.identifier.urihttps://hdl.handle.net/11376/2853
dc.identifier.wosWOS:000270044901217en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorDimirovski, Georgi M.
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2009 American Control Conference, ACC '09en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHigh-speed Networksen_US
dc.subjectNash Equilibriumen_US
dc.subjectMathematical Modelen_US
dc.subjectTraffic Controlen_US
dc.subjectBandwidthen_US
dc.subjectControl Systemsen_US
dc.subjectQuality of Serviceen_US
dc.subjectUncertaintyen_US
dc.subjectMathematicsen_US
dc.subjectThroughputen_US
dc.titleNash Q-learning multi-agent flow control for high-speed networksen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
dimirovski_2009.pdf
Boyut:
890.45 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Yayıncı Sürümü

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.51 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: