New delay-dependent stability criteria for recurrent neural networks with time-varying delays
| dc.contributor.author | Yang, Bin | |
| dc.contributor.author | Wang, Rui | |
| dc.contributor.author | Shi, Peng | |
| dc.contributor.author | Dimirovski, Georgi M. | |
| dc.date.accessioned | 2015-08-10T11:20:42Z | |
| dc.date.available | 2015-08-10T11:20:42Z | |
| dc.date.issued | 2015-03-03 | |
| dc.department | Doğuş Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
| dc.description | Dimirovski, Georgi M. (Dogus Author) | en_US |
| dc.description.abstract | This work is concerned with the delay-dependentstability problem for recurrent neural networks with time-varying delays. A new improved delay-dependent stability criterion expressed in terms of linear matrix inequalities is derived by constructing a dedicated Lyapunov-Krasovskii functional via utilizing Wirtinger inequality and convex combination approach. Moreover, a further improved delay-dependent stability criterion is established by means of a new partitioning method for bounding conditions on the activation function and certain new activation function conditions presented. Finally, the application of these novel results to an illustrative example from the literature has been investigated and their effectiveness is shown via comparison with the existing recent ones. | en_US |
| dc.identifier.citation | Yang, B., Wang, R., Shi, P., Dimirovski, G. M. (2015). New delay-dependent stability criteria for recurrent neural networks with time-varying delays. Neurocomputing, Volume 151, 1414-1422. https://dx.doi.org/10.1016/j.neucom.2014.10.048 | en_US |
| dc.identifier.doi | 10.1016/j.neucom.2014.10.048 | |
| dc.identifier.endpage | 1422 | en_US |
| dc.identifier.issn | 0925-2312 | |
| dc.identifier.issn | 1872-8286 | |
| dc.identifier.other | 000347753600047 (WOS) | |
| dc.identifier.scopus | 2-s2.0-84918543028 | en_US |
| dc.identifier.scopusquality | Q1 | en_US |
| dc.identifier.startpage | 1414 | en_US |
| dc.identifier.uri | https://dx.doi.org/10.1016/j.neucom.2014.10.048 | |
| dc.identifier.uri | https://hdl.handle.net/11376/1979 | |
| dc.identifier.volume | 151 | en_US |
| dc.identifier.wos | WOS:000347753600047 | en_US |
| dc.identifier.wosquality | Q1 | en_US |
| dc.indekslendigikaynak | Web of Science | en_US |
| dc.indekslendigikaynak | Scopus | en_US |
| dc.institutionauthor | Dimirovski, Georgi M. | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartof | Neurocomputing | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Recurrent Neural Networks | en_US |
| dc.subject | Stability | en_US |
| dc.subject | Lyapunov-Krasovskii Functional | en_US |
| dc.subject | Time-Varying Delays | en_US |
| dc.title | New delay-dependent stability criteria for recurrent neural networks with time-varying delays | en_US |
| dc.type | Article | en_US |












