Modeling of Biomedical Antennas through Forecasting DNN for the Enlarged Bandwidth

dc.contributor.authorKouhalvandi, Lida
dc.contributor.authorAlibakhshikenari, Mohammad
dc.contributor.authorLivreri, Patrizia
dc.contributor.authorMatekovits, Ladislau
dc.contributor.authorPeter, Ildiko
dc.date.accessioned2024-12-16T19:32:31Z
dc.date.available2024-12-16T19:32:31Z
dc.date.issued2024
dc.departmentDoğuş Üniversitesien_US
dc.description17th United Conference on Millemetre Waves and Terahertz Technologies, UCMMT 2024 -- 21 August 2024 through 23 August 2024 -- Palermo -- 203941en_US
dc.description.abstractRecently, wireless medical technologies are growing day-by-day resulting in complex structures and topologies. Hence, advanced methods are required for designing and optimizing biomedical devices subject to high-dimensional parameter space. This paper is devoted to presenting an effective approach for estimating frequency responses of an implanted, multiple-input multiple-output (MIMO) antenna through the deep neural network (DNN) in terms of S11, S12, and total active reflection coefficient (TARC) specifications. This impressive approach aims to facilitate the time-consuming simulations in large multi-frequency bands and concurrently reduce the dependency on the designer's experience. All the process is performed in an automated environment and the proposed method is verified by designing and optimizing an implanted MIMO antenna operating in frequency bands of 4.34-4.61 GHz, and 5.86-6.64 GHz. In this design, the Long Short-Term Memory (LSTM)-based DNN is trained for the frequency band between 3-5.8 GHz, and afterward the constructed DNN is employed for predicting the various antenna specifications for the future bandwidth of 5.8-8 GHz. © 2024 IEEE.en_US
dc.identifier.doi10.1109/UCMMT62975.2024.10737749
dc.identifier.endpage226en_US
dc.identifier.isbn979-833153022-8
dc.identifier.scopus2-s2.0-85210838803en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage223en_US
dc.identifier.urihttps://doi.org/10.1109/UCMMT62975.2024.10737749
dc.identifier.urihttps://hdl.handle.net/11376/5056
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2024 17th United Conference on Millemetre Waves and Terahertz Technologies, UCMMT 2024en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_20241215
dc.subjectBandwidthen_US
dc.subjectbiomedicalen_US
dc.subjectdeep neural network (DNN)en_US
dc.subjectextended bandwidthen_US
dc.subjectforecastingen_US
dc.subjectimplanted antennaen_US
dc.subjectlong short-term memory (LSTM)en_US
dc.subjectmultiple-input multiple-output (MIMO) antennaen_US
dc.titleModeling of Biomedical Antennas through Forecasting DNN for the Enlarged Bandwidthen_US
dc.typeConference Objecten_US

Dosyalar