On the bands of the Schrodinger operator with a matrix potential
Yükleniyor...
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Wiley-V C H Verlag Gmbh
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this article, we consider the one-dimensional Schrodinger operator L(Q)$L(Q)$ with a Hermitian periodic mxm$m\times m$ matrix potential Q. We investigate the bands and gaps of the spectrum and prove that most of the positive real axis is overlapped by m bands. Moreover, we find a condition on the potential Q for which the number of gaps in the spectrum of L(Q)$L(Q)$ is finite.
Açıklama
Anahtar Kelimeler
periodic matrix potential, self-adjoint differential operator, spectral bands
Kaynak
Mathematische Nachrichten
WoS Q Değeri
Scopus Q Değeri
Cilt
296
Sayı
3












