Perturbation theory for the periodic multidimensional Schrödinger Operator and the Bethe-Sommerfeld Conjecture

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Hikari

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this paper we obtain asymptotic formulas of arbitrary order for the Bloch eigenvalue and the Bloch function of the periodic Schr¨odinger operatör −Δ + q(x), of arbitrary dimension, when corresponding quasimomentum lies near a diffraction hyperplane. Besides, writing the asymptotic formulas for the Bloch eigenvalue and the Bloch function, when corresponding quasimomentum lies far from the diffraction hyperplanes, obtained in my previous papers in improved and enlarged form, we obtain the complete perturbation theory for the multidimensional Schr¨odinger operator with a periodic potential. Moreover, we estimate the measure of the isoenergetic surfaces in the high energy region which implies the validity of the Bethe-Sommerfeld conjecture for arbitrary dimension and arbitrary lattice.

Açıklama

Veliev, Oktay A. (Dogus Author)

Anahtar Kelimeler

Periodic Schrödinger Operator, Perturbation Theory

Kaynak

International Journal Of Contemporary Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

2

Sayı

2

Künye

Veliev, O. A. (2007). Perturbation Theory for the Periodic Multidimensional Schrödinger Operator and the Bethe-Sommerfeld Conjecture. International Journal Of Contemporary Mathematical Sciences, 2(2), 19-87.

Onay

İnceleme

Ekleyen

Referans Veren