Prediction of heat transfer characteristics in a microchannel with vortex generators by machine learning

dc.authoridDalkılıç, Ahmet Selim/0000-0002-5743-3937
dc.authoridKAYACI, NURULLAH/0000-0002-8843-8191
dc.authoridÇolak, Andaç Batur/0000-0001-9297-8134
dc.authoridOKBAZ, ABDULKERIM/0000-0002-8866-6047
dc.authoridGonul, Alisan/0000-0002-6106-2251
dc.authorwosidDalkılıç, Ahmet Selim/G-2274-2011
dc.authorwosidOkbaz, Abdulkerim/AAC-9682-2021
dc.authorwosidKAYACI, NURULLAH/GRS-4033-2022
dc.authorwosidOKBAZ, Abdulkerim/HZH-8886-2023
dc.authorwosidÇolak, Andaç Batur/AAV-3639-2020
dc.contributor.authorGonul, Alisan
dc.contributor.authorColak, Andac Batur
dc.contributor.authorKayaci, Nurullah
dc.contributor.authorOkbaz, Abdulkerim
dc.contributor.authorDalkilic, Ahmet Selim
dc.date.accessioned2024-03-15T15:24:37Z
dc.date.available2024-03-15T15:24:37Z
dc.date.issued2023
dc.departmentDoğuş Üniversitesien_US
dc.description.abstractBecause of the prompt improvements in Micro-Electro-Mechanical Systems, thermal management necessities have altered paying attention to the compactness and high energy consumption of actual electronic devices in industry. In this study, 625 data sets obtained numerically according to the change of five different geometric parameters and Reynolds numbers for delta winglet type vortex generator pairs placed in a microchannel were utilized. Four dissimilar artificial neural network models were established to predict the heat transfer characteristics in a microchannel with innovatively oriented vortex generators in the literature. Friction factor, Nusselt number, and performance evaluation criteria were considered to explore the heat transfer characteristics. Different neuron numbers were determined in the hidden layer of each of the models in which the Levethenberg-Marquardt training algorithm was benefited as the training algorithm. The predicted values were checked against the target data and empirical correlations. The coefficient of determination values calculated for each machine learning model were found to be above 0.99. According to obtained results, the designed artificial neural networks can provide high prediction performance for each data set and have higher prediction accuracy compared to empirical correlations. All data predicted by machine learning models were collected within the range of +/- 3% deviation bands, whereas the majority of the estimated data by empirical correlations dispersed within & PLUSMN;20% ones. For that reason, a full evaluation of the estimation performance of artificial neural networks versus empirical correlations data is enabled to fill a gap in the literature as one of the uncommon works.en_US
dc.identifier.doi10.1515/kern-2022-0075
dc.identifier.endpage99en_US
dc.identifier.issn0932-3902
dc.identifier.issn2195-8580
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85146184679en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage80en_US
dc.identifier.urihttps://doi.org/10.1515/kern-2022-0075
dc.identifier.urihttps://hdl.handle.net/11376/4589
dc.identifier.volume88en_US
dc.identifier.wosWOS:000907641800001en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherWalter De Gruyter Gmbhen_US
dc.relation.ispartofKerntechniken_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectHeat Transfer Enhancementen_US
dc.subjectLevenberg-Marquardten_US
dc.subjectMachine Learningen_US
dc.subjectMicrochannelen_US
dc.subjectVortex Generatoren_US
dc.subjectArtificial Neural-Networken_US
dc.subjectThermal-Conductivityen_US
dc.subjectSingle-Phaseen_US
dc.subjectRectangular Microchannelen_US
dc.subjectForced-Convectionen_US
dc.subjectLiquid Flowen_US
dc.subjectNanofluiden_US
dc.subjectChannelen_US
dc.subjectModelen_US
dc.subjectSinken_US
dc.titlePrediction of heat transfer characteristics in a microchannel with vortex generators by machine learningen_US
dc.typeArticleen_US

Dosyalar