On non-self-adjoint sturm-liouville operators in the space of vector functions
Yükleniyor...
Dosyalar
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
MAIK Nauka/Interperiodica
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this article we obtain asymptotic formulas for the eigenvalues and eigenfunctions of the non-self-adjoint operator generated in L-2(m) [0, 1] by the Sturm-Liouville equation with m x m matrix potential and the boundary conditions which, in the scalar case (m = 1), are strongly regular. Using these asymptotic formulas, we find a condition on the potential for which the root functions of this operator form a Riesz basis.
Açıklama
Anahtar Kelimeler
Differential Operators, Matrix Potential, Riesz Basis
Kaynak
Mathematical Notes
WoS Q Değeri
Scopus Q Değeri
Cilt
95
Sayı
1-2
Künye
ŞEREF, F., VELİEV, O.A. (2014). On non-self-adjoint sturm-liouville operators in the space of vector functions. Mathematical Notes, 95 (1-2). pp.180-190. https://dx.doi.org/10.1134/S0001434614010192.












