Groups of automorphisms with TNI-centralizers

Yükleniyor...
Küçük Resim

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/embargoedAccess

Özet

A subgroup H of a finite group G is called a TNI-subgroup if NG(H)∩Hg=1 for any g∈G\NG(H). Let A be a group acting on G by automorphisms where CG(A) is a TNI-subgroup of G. We prove that G is solvable if and only if CG(A) is solvable, and determine some bounds for the nilpotent length of G in terms of the nilpotent length of CG(A) under some additional assumptions. We also study the action of a Frobenius group FH of automorphisms on a group G if the set of fixed points CG(F) of the kernel F forms a TNI-subgroup, and obtain a bound for the nilpotent length of G in terms of the nilpotent lengths of CG(F) and CG(H).

Açıklama

Güloğlu, İsmail, Şuayip (Dogus Author)

Anahtar Kelimeler

TNI-Subgroup, Automorphism, Centralizer, Frobenius Group

Kaynak

Journal of Algebra

WoS Q Değeri

Scopus Q Değeri

Cilt

498

Sayı

Künye

Ercan, G., Güloğlu, İ. Ş. (2018). Groups of automorphisms with TNI-centralizers. Journal of Algebra, 498, 38-46. https://doi.org/10.1016/j.jalgebra.2017.10.021

Onay

İnceleme

Ekleyen

Referans Veren