Optimal Coordination of Directional Overcurrent Relays Using Artificial Ecosystem-Based Optimization

dc.authorscopusid25651286200
dc.authorscopusid57216417848
dc.authorscopusid35101845300
dc.contributor.authorGuvenc, U.
dc.contributor.authorBakir, H.
dc.contributor.authorDuman, S.
dc.date.accessioned2022-02-04T19:20:06Z
dc.date.available2022-02-04T19:20:06Z
dc.date.issued2021
dc.description.abstractOptimal directional overcurrent relays (DOCRs) coordination aims to find the optimal relay settings in order to protect the system, where, the primary relays are operated in the first to clear the faults, then the corresponding backup relays should be operated in case of failing the primary relays. DOCRs coordination problem is a non-convex and high dimensional optimization problem and it should be solved subject to operating constraints. The objective function for optimal coordination of DOCRs aims to minimize total operation time for all primary relays without violation in constraints to maintain reliability and security of the electric power system. This paper proposes the artificial ecosystem-based optimization (AEO) algorithm is for the solution of the DOCRs coordination problem. Simulation studies were carried out in IEEE 3-bus and IEEE 4-bus test systems to evaluate the performance of the proposed algorithm. The simulation results are compared with differential evolution algorithm (DE), opposition based chaotic differential evolution algorithm (OCDE1and OCDE2), and three real coded genetic algorithms (RCGAs) namely: Laplace crossover power mutation (LX-PM), Laplace crossover polynomial mutation (LX-POL), bounded exponential crossover power mutation (BEX-PM). The results clearly showed that the proposed algorithm is a powerful and effective method to solve the DOCRs coordination problem. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.identifier.doi10.1007/978-3-030-79357-9_15
dc.identifier.endpage164en_US
dc.identifier.issn2367-4512
dc.identifier.scopus2-s2.0-85109810083en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage150en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-030-79357-9_15
dc.identifier.urihttps://hdl.handle.net/11376/3994
dc.identifier.volume76en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes on Data Engineering and Communications Technologiesen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial ecosystem-based optimizationen_US
dc.subjectDirectional overcurrent relaysen_US
dc.subjectPower system optimizationen_US
dc.subjectEcosystemsen_US
dc.subjectElectric power systemsen_US
dc.subjectElectric relaysen_US
dc.subjectLaplace transformsen_US
dc.subjectChaotic differential evolutionsen_US
dc.subjectCoordination problemsen_US
dc.subjectDifferential evolution algorithmsen_US
dc.subjectDirectional over-current relaysen_US
dc.subjectDirectional overcurrent relay (DOCRs)en_US
dc.subjectHigh-dimensional optimizationen_US
dc.subjectOperating constraintsen_US
dc.subjectReal coded genetic algorithmen_US
dc.subjectGenetic algorithmsen_US
dc.titleOptimal Coordination of Directional Overcurrent Relays Using Artificial Ecosystem-Based Optimizationen_US
dc.typeBook Chapteren_US

Dosyalar