A combinatorial discussion on finite edimensional Leavitt path algebras

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Hacettepe University

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Any finite dimensional semisimple algebra A over a field K is isomorphic to a direct sum of finite dimensional full matrix rings over suitable division rings. We shall consider the direct sum of finite dimensional full matrix rings over a field K. All such finite dimensional semisimple algebras arise as finite dimensional Leavitt path algebras. For this specific finite dimensional semisimple algebra A over a field K, we define a uniquely determined specific graph - called a truncated tree associated with A - whose Leavitt path algebra is isomorphic to A. We define an algebraic invariant κ(A) for A and count the number of isomorphism classes of Leavitt path algebras with the same fixed value of κ(A). Moreover, we find the maximum and the minimum K-dimensions of the Leavitt path algebras of possible trees with a given number of vertices and we also determine the number of distinct Leavitt path algebras of line graphs with a given number of vertices.

Açıklama

Güloğlu, İsmail Ş. (Dogus Author)

Anahtar Kelimeler

Finite Dimensional Semisimple Algebra, Leavitt Path Algebra, Truncated Trees, Line Graphs

Kaynak

Hacettepe Journal of Mathematics and Statistics

WoS Q Değeri

Scopus Q Değeri

Cilt

43

Sayı

6

Künye

Koç, A., Esin, S., Güloğlu, İ. Ş., & Kanuni, M. (2014). A combinatorial discussion on finite edimensional Leavitt path algebras. Hacettepe Journal of Mathematics and Statistics, 43(6), 943-951.

Onay

İnceleme

Ekleyen

Referans Veren