dc.contributor.author | Wang, Yan | |
dc.contributor.author | Ojleska, Vesna M. | |
dc.contributor.author | Jing, Yuanwei | |
dc.contributor.author | Gugulovska, Tatyana D. K. | |
dc.contributor.author | Dimirovski, Georgi M. | |
dc.date.accessioned | 2016-02-04T12:32:40Z | |
dc.date.available | 2016-02-04T12:32:40Z | |
dc.date.issued | 2010-09 | |
dc.identifier.citation | Wang, Y., Ojleska, V. M., Jing, Y., Gugulovska, T. D. K., & Dimirovski, G. M. (2010). Short term load forecasting: A dynamic neural network based genetic algorithm optimization. In 2010 14th International Power Electronics and Motion Control Conference (EPE/PEMC) (pp. T6-157-T6-161). Piscataway, NJ: IEEE. https://dx.doi.org/10.1109/EPEPEMC.2010.5606508 | en_US |
dc.identifier.isbn | 9781424478569 | |
dc.identifier.other | 11613502 (INSPEC) | |
dc.identifier.other | 5606508 (Scopus) | |
dc.identifier.uri | https://dx.doi.org/10.1109/EPEPEMC.2010.5606508 | |
dc.identifier.uri | https://hdl.handle.net/11376/2372 | |
dc.description | Dimirovski, Georgi M. (Dogus Author) -- Conference full title: 2010 14th International Power Electronics and Motion Control Conference (EPE/PEMC 2010) : Ohrid, Macedonia, 6 - 8 September 2010 | en_US |
dc.description.abstract | The short term load forecasting plays a significant role in the management of power system supply for countries and regions, in particular in cases of insufficient electric energy for increased needs. A back-propagation artificial neural-network (BP-ANN) genetic algorithm (GA) based optimizing technique for improved accuracy of predictions short term loads is proposed. With GA's optimizing and BP-ANN's dynamic capacity, the weighted GA optimization is realized by selection, crossing and mutation operations. The performance of the proposed technique has been tested using load time-series from a real-world electrical power system. Its prediction has been compared to those of obtained by only backpropagation based neural-network techniques. Simulation results demonstrated that the here proposed technique possesses superior performance thus guarantees better forecasting. | en_US |
dc.description.sponsorship | ELEM, Repub. Macedonia Chamb. Certif. Archit. Certif. Eng. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | IEEE | en_US |
dc.identifier.doi | 10.1109/EPEPEMC.2010.5606508 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Distribution of Electrical Energy | en_US |
dc.subject | Emerging Technology | en_US |
dc.subject | Energy System Management | en_US |
dc.subject | Genetic Algorithm | en_US |
dc.subject | Modeling | en_US |
dc.subject | Neural Network | en_US |
dc.title | Short term load forecasting: A dynamic neural network based genetic algorithm optimization | en_US |
dc.type | conferenceObject | en_US |
dc.relation.journal | 2010 14th International Power Electronics and Motion Control Conference (EPE/PEMC) | en_US |
dc.department | Doğuş Üniversitesi, Mühendislik Fakültesi, Kontrol ve Otomasyon Mühendisliği Bölümü | en_US |
dc.identifier.startpage | T6-157 | en_US |
dc.identifier.endpage | T6-161 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.institutionauthor | Dimirovski, Georgi M. | |