On multiplication lattice modules

Fethi Çağlıalp*, Ünsal Tekir† and Emel AslanKarayiğit‡

Abstract

In this paper we study multiplication lattice modules. Next we characterize hollow lattices modules. We also establish maximal elements in multiplication lattices modules.In [16], we introduced the concept of a multiplication lattice L-module and we characterized it by principal elements.In this paper, we continue study on multiplication lattice L-module.

Received 24/01/2013 : Accepted 07/05/2013

2000 AMS Classification: Primary 16F10; Secondary 16F05

Keywords: Multiplicative lattices, Lattices modules, prime elements.

1.

A multiplicative lattice L is a complete lattice in which there is defined a commutative, associative multiplication which distributes over arbitrary joins and has compact greatest element 1_L (least element 0_L) as a multiplicative identity (zero). Multiplicative lattices have been studied extensively by E.W.Johnson, C.Jayaram, the current authors, and others, see, for example, [1 – 16].

An element $a \in L$ is said to be proper if $a < 1$. An element $p < 1_L$ in L is said to be prime if $ab \leq p$ implies $a \leq p$ or $b \leq p$. An element $m < 1$ in L is said to be maximal if $m < x \leq 1_L$ implies $x = 1_L$. It is easily seen that maximal elements are prime.

If a, b belong to L, $(a \land b)$ is the join of all $c \in L$ such that $cb \leq a$. An element e of L is called meet principal if $a \land e = ((a \land e) \land b) e$ for all $a, b \in L$. An element e is called join principal if $(ae \lor b : L e) = a \lor (b : L e)$ for all $a, b \in L$. $e \in L$ is said to be principal if e is both meet principal and join principal. $e \in L$ is said to be weak meet (join) principal if $a \land e = e$ for all $a \in L$. $e \in L$ is called compact if $a = \lor b_0$ implies $a \leq b_0 \lor b_{\alpha_2} \lor \ldots \lor b_{\alpha_n}$ for some subset $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$. If each element of L is a join of principal (compact) elements of L, then L is called a PG−lattice (CG − lattice).

Let M be a complete lattice. Recall that M is a lattice module over the multiplicative lattice L, or simply an L-module in the case there is a multiplication between elements of L and M, denoted by lB for $l \in L$ and $B \in M$, which satisfies the following properties :
(i) \((lb) B = l(bB) \);
(ii) \(\left(\bigvee l_\alpha \right) \left(\bigvee B_\beta \right) = \bigvee l_\alpha B_\beta \);
(iii) \(1LB = B \);
(iv) \(0LB = 0M \) for all \(l, l_\alpha, b \) in \(L \) and for all \(B, B_\beta \) in \(M \).

Let \(M \) be an \(L \)-module. If \(N, K \) belong to \(M \), \((N :_L K) \) is the join of all \(a \in L \) such that \(aK \leq N \). If \(a \in L \), \((0_L : a M) \) is the join of all \(H \in M \) such that \(aH = 0_M \). An element \(N \) of \(M \) is called meet principal if \((bN : b M) N = bN \cap B \) for all \(b \in L \) and for all \(B \in M \). An element \(N \) of \(M \) is called join principal if \(b \cap (B : M) N = ((bN \cap B) : M) N \) for all \(b \in L \) and for all \(N \in M \). \(N \) is said to be principal if it is both meet principal and join principal. In special case an element \(N \) of \(M \) is called weak meet principal (weak join principal) if \((bN : M) N = bN \cap M \) \((bN : M) N = bM \cap B \) for all \(b \in M \) and for all \(b \in L \). \(N \) is called to be weak principal if \(N \) is both weak meet principal and weak join principal.

Let \(M \) be an \(L \)-module. An element \(N \in M \) is called compact if \(N \leq \bigvee B_\alpha \) implies \(N \leq B_{\alpha_1} \sqcup B_{\alpha_2} \sqcup \ldots \sqcup B_{\alpha_n} \) for some subset \(\{\alpha_1, \alpha_2, \ldots, \alpha_n\} \). The greatest element of \(M \) will be denoted by \(1_M \). If each element of \(M \) is a join of principal (compact) elements of \(M \), then \(M \) is called a \(PG \)-lattice (CG-lattice).

Let \(L \) be a multiplicative lattice and let \(M \) be an \(L \)-module. If \(M \) is \(CG \)-lattice, then any weak principal element \(N \) of \(M \) is compact [14, Corollary 2.2]. Especially, if \(L \) is a \(CG \)-lattice, then any weak principal element in \(L \) is compact [14, Corollary 2.3].

For various characterizations of lattice modules, the reader is referred to [9 – 16].

H.M. Nakkar and I.A. Al-Khouja [13, 14] studied multiplicative lattice modules over multiplicative lattices. In [16], we introduced the concept of a multiplication lattice module and we characterized it by principal elements. In this study, we continue study on multiplicative lattice \(L \)-module and we prove that many important theorems like Nakayama Lemma. We also prove that if \(L \) is a multiplicative \(PG \)-lattice and \(M \) is a multiplication \(PG \)-lattice module, then \(K \) is maximal element of \(M \) if and only if there exist a maximal element \(p \in L \) such that \(K = p1_M < 1_M \).

1.1. Definition. Let \(L \) be a multiplicative lattice and \(c \in L \). \(c \) is said to be a multiplication element if for every element \(a \in L \) such that \(a \leq c \) there exists an element \(d \in L \) such that \(a = cd \).

1.2. Definition. Let \(L \) be a multiplicative lattice and \(M \) a lattice \(L \)-module. \(N \in M \) is said to be a multiplication element if for every element \(K \) of \(M \) such that \(K \leq N \) there exists an element \(a \in L \) such that \(K = aN \).

Note that, \(a \in L \) is a multiplication element if and only if \(a \) is a weak meet principal element in \(L \) and \(N \) is a multiplication element if and only if \(N \) is a weak meet principal element in \(M \). We say that \(M \) is a multiplication lattice \(L \)-module if \(1_M \) is a multiplication element in \(M \).

1.3. Theorem. Let \(L \) be a \(PG \)-lattice and \(M \) be a \(PG \)-lattice \(L \)-module. Then \(M \) is a multiplication lattice \(L \)-module if and only if for every maximal element \(q \in L \),

(i): For every principal element \(Y \in M \), there exists a principal element \(qY \in L \) with \(qY \leq q \) such that \(qY = 0_M \) or

(ii): There exists a principal element \(X \in M \) and a principal element \(b \in L \) with \(b \leq q \) such that \(b1_M \leq X \).
Proof. [see 16, Theorem 4]. □

1.4. Theorem. Let L be a PG-lattice, and M be a faithful multiplication PG-lattice L-module. Then the following conditions are equivalent.

(i): 1_M is a compact element of M.

(ii): If $a, c \in L$ such that $a1_M \leq c1_M$, then $a \leq c$.

(iii): For each element N of M there exists a unique element a of L such that $N = a1_M$.

(iv): $1_M \neq a1_M$ for any proper element a of L.

(v): $1_M \neq p1_M$ for any maximal element p of L.

Proof. [see 16, Theorem 5]. □

1.5. Proposition. Let L be a PG-lattice and M be a faithful multiplication PG-lattice L-module such that 1_M compact. If $a \in L$ is a multiplication element, then $a1_M \in M$ is a multiplication element.

Proof. Let $K \leq a1_M$. Since M is a multiplication module, $K = b1_M$ for some $b \in L$. Then $K = b1_M \leq a1_M$. Since 1_M is compact, $b \leq a$ by Theorem 2(ii). Since $a \in L$ is a multiplication element, we have $b = ac$ for some $c \in L$ and so $K = b1_M = (ac)1_M = c(a1_M)$. Consequently, $a1_M$ is a multiplication element. □

1.6. Proposition. Let L be a PG-lattice and M a faithful multiplication PG-lattice L-module such that 1_M is compact.

(i): N is a multiplication element in M if and only if $(K : L) N (N : L 1_M) = (K : L 1_M)$ for all $K \leq N$.

(ii): $a = (a1_M : L 1_M)$ for all $a \in L$.

(iii): N is a multiplication element in M if and only if $(N : L 1_M)$ is a multiplication element in L.

(iv): $a1_M$ is a multiplication element in M if and only if a is a multiplication element in L.

Proof. (i) \Rightarrow: Let N be a multiplication element in M and $K \leq N$. Then $K = bN$ for some $b \in L$. Since M is a multiplication lattice L-module,

\[K = bN = (bN : L 1_M) N = (bN : L N) (N : L 1_M) 1_M = (K : L 1_M) 1_M. \]

Therefore $(K : L N) (N : L 1_M) 1_M = (K : L 1_M) 1_M$.

\Leftarrow: Since

\[K = (K : L 1_M) 1_M = (K : L N) (N : L 1_M) 1_M = (K : L N) N \]

for all $K \leq N$, N is a multiplication element.

(ii) Since M is a multiplication lattice module, we have $a1_M = (a1_M : L 1_M) 1_M$ and so $a = (a1_M : L 1_M)$ for all $a \in L$ by Theorem 2(ii).

(iii) \Rightarrow: Let N be a multiplication element. If $a \leq (N : L 1_M)$, then $a = (a1_M : L 1_M)$ by (ii) and $a = (a1_M : L 1_M) = (a1_M : L N) (N : L 1_M)$ by (i). Therefore, $a = c(N : L 1_M)$ where $c = (a1_M : L N)$. Then $(N : L 1_M)$ is a multiplication element in L.

\Leftarrow: Let $(N : L 1_M)$ be a multiplication element in L. Then $(N : L 1_M) 1_M = N$ multiplication element in M by Proposition 1.

(iv) \Rightarrow: Let $N = a1_M$ be a multiplication element in M. Then $(N : L 1_M) = (a1_M : L 1_M) = a$ is a multiplication element in L by (iii).

\Leftarrow: Let $a \in L$ be a multiplication element in L. Then $N = a1_M$ is a multiplication element in M by Proposition 1. □
1.7. Proposition. Let L be a multiplicative lattice and M a multiplication lattice L-module. If L is a Noetherian (Artinian) lattice, then M is a Noetherian (Artinian) L-module.

Proof. Suppose that $N_1 \leq N_2 \leq \ldots$ and L is Noetherian. Then $(N_1 :_L 1_M) \leq (N_2 :_L 1_M) \leq \ldots$. Since L is Noetherian, there is a positive integer $k > 0$ such that $(N_k :_L 1_M) = (N_{k+1} :_L 1_M) = \ldots$ and so $(N_k :_L 1_M)1_M = (N_{k+1} :_L 1_M)1_M = \ldots$. Therefore, $N_k = N_{k+1} = \ldots$. Similarly, if L is Artinian, then M is Artinian. □

1.8. Definition. Let L be a multiplicative lattice and M be a lattice L-module. Let K be a proper element in M. K is said to be a small element if for every element N of M such that $K \lor N = 1_M$ implies $N = 1_M$.

1.9. Definition. Let L be a multiplicative lattice and M be a lattice L-module. If every proper element of M is small, then M is called a hollow L-module.

1.10. Theorem. Let L be a PG-lattice and M be a faithful multiplication PG-lattice L-module with 1_M compact. Then M is a hollow L-module if and only if L is a hollow L-module.

Proof. \Rightarrow: Suppose that L is hollow. Let $a < 1_L$ such that $a \lor b = 1_L$ for some $b \in L$. Then $(a \lor b)1_M = a1_M \lor b1_M = 1_M$. Since $a < 1_L$, $a1_M < 1_M$ by Theorem 2. By hypothesis, $b1_M = 1_M$ and hence $b = 1_L$ by Theorem 2 (ii). Therefore a is a small element in L.

\Leftarrow: Suppose that L is a hollow L-module. Let $N < 1_M$ and K be any element in M such that $N \lor K = 1_M$. Since M is a multiplication L-module, we have $N = (N :_L 1_M)1_M$ and $K = (K :_L 1_M)1_M$. Then,

$$1_M = N \lor K = (N :_L 1_M)1_M \lor (K :_L 1_M)1_M = ([N :_L 1_M] \lor (K :_L 1_M))1_M.$$

Therefore, $(N :_L 1_M) \lor (K :_L 1_M) = 1_L$ by Theorem 2 (ii). Since $N = (N :_L 1_M)1_M < 1_M$, we have $(N :_L 1_M) < 1_L$ and so $(K :_L 1_M) = 1_L$ by hypothesis. This shows that $K = 1_M$. Consequently, M is hollow. □

1.11. Theorem. Let L be a PG-lattice and M be a faithful multiplication PG-lattice L-module with 1_M compact. Then, N is small if and only if there exists a small element $a \in L$ such that $N = a1_M$.

Proof. \Rightarrow: Suppose that $N \in M$ is small and $N = a1_M$ for some proper element a in L. Suppose that $a \lor b = 1_L$ for some $b \in L$. Then

$$N \lor b1_M = a1_M \lor b1_M = (a \lor b)1_M = 1_M$$

and so $b1_M = 1_M$ by hypothesis. Hence $b = 1_L$ by Theorem 2. This shows that a is small in L.

\Leftarrow: Suppose that $a \in L$ is small such that $N = a1_M$. Let $N \lor K = a1_M \lor K = 1_M$ for some $K \in M$. Since M is a multiplication L-module, there is an element $b \in L$ such that $K = b1_M$ and hence $(a \lor b)1_M = a1_M \lor K = 1_M$. Then $a \lor b = 1_L$ by Theorem 2 (ii) and hence $b = 1_L$ by hypothesis. Therefore, $K = 1_M$. This shows that $a1_M$ is small. □

1.12. Definition. Let M be a L-module. An element $N < 1_M$ in M is said to be prime if $aX \leq N$ implies $X \leq N$ or $a1_M \leq N$ i.e. $a \leq (N :_L 1_M)$ for every $a \in L, X \in M$.

1.13. Definition. Let M be an L-module. M is said to be prime L-module if 0_M is prime element of M.

It is clear that 0_M is prime element in M if and only if $(0_M :_L 1_M) = (0_M :_L N)$ for all $0_M \neq N \in M$.

1.14. Definition. Let M be an L-module. M is said to be coprime L-module if $(0_M :_L 1_M) = (N :_L 1_M)$ for all $N \in M$ such that $N < 1_M$.

Recall that a lattice L-module M is called simple if $M = \{0_M, 1_M\}$.

1.15. Proposition. If M is a multiplication and coprime L-module, then M is simple.

Proof. Let $N \in M$ such that $N < 1_M$. Since M is a coprime L-module, we have $(0_M :_L 1_M) = (N :_L 1_M)$. Since M is a multiplication L-module, it follows that $N = (N :_L 1_M) 1_M = (0_M :_L 1_M) 1_M = 0_M$. Then M is simple. □

1.16. Definition. Let L be a PG-lattice and M a PG-lattice L-module. Let p be a maximal element of L. M is called p-torsion provided for each principal element $X \in M$ there exists a principal element $qX \in L$, $qX \not\subseteq p$ such that $qX = 0_M$.

1.17. Definition. Let L be a PG-lattice and M a PG-lattice L-module. M is called p-cyclic provided there exists a principal element $Z \in M$ and a principal element $q \in L$, $q \not\subseteq p$ such that $q1_M \leq Z$.

Let M be an L-module. Let N and K be elements of M such that $N \leq K$. Define $[N, K] = \{A \in M : N \leq A \leq K\}$. Then $[N, K]$ is an L-module. It is clear that N is a multiplication element if and only if $[0_M, N]$ is a multiplication lattice L-module. Recall that $\text{ann}(X) = (0_M :_L X)$ for any $X \in M$.

1.18. Theorem. Let L be a PG-lattice and M a PG-lattice L-module. Let $\{N_\lambda\}_{\lambda \in \Lambda}$ be a collection of elements of M such that $N = \bigvee_{\lambda \in \Lambda} N_\lambda$ and $a = \bigvee_{\lambda \in \Lambda} (N_\lambda :_L N)$.

i) N is a multiplication element in M.

ii) $H = aH$ for all elements $H \leq N$.

iii) $1_L = a\bigvee \text{ann}(X)$ for all principal elements $X \leq N$.

iv) $(N :_L K) \bigvee \text{ann}(X) = \bigvee_{\lambda \in \Lambda} (N_\lambda :_L K) \bigvee \text{ann}(X)$ for all principal elements $X \leq N$ and for all elements K in M.

Then, (i) \Rightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv). If all N_λ are multiplication elements, then the conditions are equivalent.

Proof. (i) \Rightarrow (ii). Let $a = \bigvee_{\lambda \in \Lambda} (N_\lambda :_L N)$. Then $aN = \bigvee_{\lambda \in \Lambda} (N_\lambda :_L N) = N$. Since N is a multiplication element, there exist an element $h \in L$ such that $H = hN$ for $H \leq N$.

Therefore, $aH = ahN = h(aN) = hN = H$.

(ii) \Rightarrow (iii). Suppose that $1_L \neq a\bigvee \text{ann}(X)$ for all principal elements $X \leq N$. There exists a maximal element $p \in L$ such that $a\bigvee \text{ann}(X) \leq p$ for each principal element $X \leq N$. Since $X = aX \leq pX \leq X$, we have $X = pX$. Then, $1_L = (pX :_L X) = p\bigvee \text{ann}(X)$.

Since $\text{ann}(X) \leq a\bigvee \text{ann}(X) \leq p$, we get a contradiction.

(iii) \Rightarrow (ii). Since $X = (a\bigvee \text{ann}(X)) X = aX$ for all principal elements $X \leq N$, it follows that $H = aH$ for every $H \leq N$.

(iii) \Rightarrow (iv). Since $\bigvee_{\lambda \in \Lambda} (N_\lambda :_L K) K \leq \bigvee_{\lambda \in \Lambda} N_\lambda = N$, we have $\bigvee_{\lambda \in \Lambda} (N_\lambda :_L K) \leq \bigvee_{\lambda \in \Lambda} N_\lambda :_L K = (N :_L K)$. Therefore, $\bigvee_{\lambda \in \Lambda} (N_\lambda :_L K) \bigvee \text{ann}(X) \leq (N :_L K) \bigvee \text{ann}(X)$ for all principal elements $X \leq N$. Conversely, w_1 and w_2 be principal elements such that $w_1 \bigvee w_2 \leq (N :_L K) \bigvee \text{ann}(X)$ where $w_1 \leq (N :_L K)$ and $w_2 \leq \text{ann}(X)$. Then $1_L = a\bigvee \text{ann}(X) = \bigvee_{\lambda \in \Lambda} (N_\lambda :_L N) \bigvee \text{ann}(X)$. Hence $w_1 = \bigvee_{\lambda \in \Lambda} (N_\lambda :_L N) w_1 \bigvee \text{ann}(X) w_1$.

Since $w_1 K \leq N$, we have $(N_\lambda :_L N) w_1 K \leq (N_\lambda :_L N) N \leq N$ and so $(N_\lambda :_L N) w_1 \leq (N_\lambda :_L K)$. Therefore,
\[
\begin{align*}
 w_1 \lor w_2 &= \bigvee_{\lambda \in \Lambda} (N_\lambda : L N) w_1 \lor \text{ann}(X) w_2 \\
 &\leq \bigvee_{\lambda \in \Lambda} (N_\lambda : L K) \lor \text{ann}(X).
\end{align*}
\]

Hence, \((N : L K) \lor \text{ann}(X) \leq \bigvee_{\lambda \in \Lambda} (N_\lambda : L K) \lor \text{ann}(X)\).

(iv) \implies (iii). If we take \(K = N\), then \(1_L = (N : L N) \lor \text{ann}(X) = a \lor \text{ann}(X)\)

(iii) \implies (i). Suppose that \(1_L = a \lor \text{ann}(X)\) for all principal elements \(X \leq N\). Suppose that \(N\) is not \(p\)-torsion. There exists a principal element \(X \leq N\) such that \(\text{ann}(X) = (0_M : L X) \leq p\). Since \(1_L = a \lor \text{ann}(X)\), we have \(a = \bigvee_{\lambda \in \Lambda} (N_\lambda : L N) \neq p\). There exists \(\lambda \in \Lambda\) such that \((N_\lambda : L N) \neq p\). There exists a principal element \(b \neq p\) such that \(b \leq (N_\lambda : L N)\). Since \(N_\lambda\) is a multiplicative element and not \(p\)-torsion, it follows that \(N_\lambda\) is \(p\)-cyclic by Theorem 1. Indeed, if \(N_\lambda\) is a \(p\)-torsion, then \(cN_\lambda = 0_M\) for some principal element \(c \neq p\) and so \(bN \leq N_\lambda\) implies \(bcN \leq cN_\lambda = 0_M\). Then \(bc \leq (0_M : L N)\).

Therefore \(bcY = 0_M\) for all principal elements \(Y \leq N\) and principal element \(bc \neq p\). Since \(N\) is not \(p\)-torsion, this is a contradiction. Hence \(N_\lambda\) is \(p\)-cyclic. Therefore, \(dN_\lambda \leq Y_\lambda\) for some principal element \(Y_\lambda \leq N_\lambda\) and principal element \(d \neq p\).

Therefore, \(bN \leq N_\lambda\) and so \(bdN \leq dN_\lambda \leq Y_\lambda\) and \(bd \neq p\). Consequently, \(N\) is not \(p\)-cyclic. □

1.19. Theorem. (Nakagama Lemma) Let \(M\) be a non-zero multiplication \(PG\)-lattice \(L\)-module. Let \(a \in L\) such that for all maximal element \(q \in L\), \(a \leq q\). Then \(a1_M < 1_M\).

Proof. Let \(a \in L\) such that \(a \leq q\) for all maximal element \(q \in L\) and suppose that \(a1_M = 1_M\). Let consider principal element \(0_M \neq X \in M\). Since \(M\) is a multiplication \(L\)-module, we have \(X = b1_M\) for some \(b \in L\). Hence \(X = b1_M = ab1_M = aX\). Thus \(1_L = (aX : X) = a \lor (0_M : L X)\) for all principal elements \(X \in M\). Since \(0_M : L X < 1_L\), there exists a maximal element \(p \in L\) such that \((0_M : L X) \leq p\). By hypothesis \(a \leq p\), hence \(1_L = (aX : X) = a \lor (0_M : L X) \leq p\) and we obtain a contradiction. □

1.20. Proposition. Let \(L\) be a multiplicative \(PG\)-lattice. Let \(M\) be a multiplication \(PG\)-lattice \(L\)-module and \((0_M : 1_M) \leq p\) for some prime element \(p \in L\). If \(a1_M \leq p1_M\) for some \(a \in L\), then \(a \leq p\) or \(p1_M = 1_M\).

Proof. If \(a1_M \leq p1_M\) for some \(a \in L\), then \(aX \leq p1_M\) for all principal element \(X \in M\). Hence \(a \leq p\) or \(X \leq p1_M\) [see 16, Theorem 6]. If \(a \neq p\), then \(X \leq p1_M\) for all principal element \(X \in M\), hence it is clear that \(p1_M = 1_M\). □

1.21. Proposition. Let \(L\) be a multiplicative \(PG\)-lattice. Let \(M\) be a multiplication \(PG\)-lattice \(L\)-module. Then \(K\) is maximal element of \(M\) if and only if there is a maximal \(p \in L\) such that \(K = p1_M < 1_M\).

Proof. \(\Leftarrow\): If there exist a maximal element \(p \in L\) such that \(K = p1_M < 1_M\), then \(K\) is maximal [see 16, Proposition 4].

\(\Rightarrow\): Let \(K\) be a maximal element of \(M\) and \((K : 1_M) = q\). Since \(M\) is a multiplication lattice module, we have \(K = q1_M\). We show that \((K : 1_M) = q\) is a maximal element of \(L\). If \(q\) is not a maximal element, there exists a maximal element \(p\) such that \(q < p\). Then \(p1_M \neq K\). Indeed, if \(p1_M \leq K\), then \(p \leq (K : 1_M) = q\). This is a contradiction. Therefore, \(1_M = K \lor p1_M = (q \lor p)1_M = p1_M\). Hence \(X = pX\) for all principal elements \(X\) and so \(1_L = (pX : L X) = p \lor (0_M : L X)\). This implies that \((0_M : L X) \neq p\).

Therefore, there exists a principal element \(pX \in L\) such that \(pX \leq (0_M : L X)\) and \(pX \neq p\). If we take a principal element \(X\) such that \(X \neq K\), then \(X \lor K = 1_M\). Hence \(pX \lor pXK = pX1_M\) and so \(pXK = pX1_M \leq K\). Therefore, \(pX \leq (K : 1_M) = q < p\). This is a contradiction. □
1.22. Theorem. Let L be a CG-lattice and M be a PG-lattice L-module. Then M is a multiplication lattice L-module if and only if for every maximal element $q \in L$,

(i) For every principal element $Y \in M$, there exists a compact element $q_Y \in L$ with $q_Y \not\leq q$ such that $q_Y Y = 0_M$ or

(ii) There exists a principal element $X \in M$ and a compact element $b \in L$ with $b \not\leq q$ such that $b_1M \leq X$.

Proof. \implies: Let M be a multiplication lattice L-module. We have two cases.

Case 1. Let $q_1M = 1_M$ where q is a maximal element of L. For every principal element $Y \in M$, there exists an element $a \in L$ such that $Y = a_1M$. Then $Y = a_1M = aq_1M = qY$. Therefore, $aL = (qY : L)Y = q \lor (0M : L)Y$. Hence $(0M : L)Y \not\leq q$. There exists a compact element q_Y such that $q_Y \not\leq (0M : L)Y$ and $q_Y \not\leq q$.

Case 2. Let $q_1M < 1_M$. There exists a principal element $X \in M$ such that $X = j_1M \not\leq q_1M$, with $j \in L, j \not\leq q$. There exists a compact element $b \in L$ with $b \leq j$ and $b \not\leq q$. We obtain $b_1M \leq j_1M = X$.

\impliedby: Let $N \in M$. Put $a = (N : L)M$. Clearly $a_1M = (N : L)1_MM \leq N$. Take any principal element $Y \leq N$. We will show that $(a_1M : L)Y = 1_L$. Suppose there exists a maximal element $q \in L$ such that $(a_1M : L)Y \leq q$. We have two cases.

Case 1. Suppose that (i) is satisfied. There exists a compact element $q_Y \in L$ with $q_Y \not\leq q$ such that $q_Y Y = 0_M$ for every principal element $Y \in M$. Then $q_Y \not\leq (0M : L)$ $Y \iff (a_1M : L)Y \leq q$. This is a contradiction.

Case 2. Suppose that (ii) is satisfied. There exists a principal element $X \in M$ and a compact element $b \in L$ with $b \not\leq q$ such that $b_1M \leq X$. Then $bN \leq b_1M \leq X$ for any $N \in M$. Since X is a principal element of M, $bN = (bN : L)X$. Then $b(bN : L)X \leq (a_1M : L)X = bN \leq N$ and so $b(bN : L)X \leq a = (N : L)1_M$. Therefore $b_2Y \leq b_2bN \leq b_2bN : L)X \leq aX \leq a_1M$. Since $b_2 \leq (a_1M : L)Y \leq q$. Since q is maximal (and so prime) element of L, we have $b \leq q$. This is a contradiction.

\hfill \Box

1.23. Definition. Let M be an L-module. An element $N < 1_M$ in M is said to be primary, if $aX \leq N$ and $X \not\leq N$ implies $a^k1_M \leq N$, for some $k \geq 0$ i.e. $a^k \leq (N : 1_M)$ for every $a \in L, X \in M$.

If a is an element of a multiplicative lattice L, we define $\sqrt{a} = \lor \{b \in L : b^k \leq a \text{ for some natural number } n\}$.

1.24. Theorem. Let L be a CG-lattice and M be a multiplication PG-lattice L-module. Suppose that p is a primary element in L with $(0M : L)1_M \leq p$. If $aX \leq pL$, where $a \in L, X \in M$, then $X \leq p1_M$ or $a \leq \sqrt{p}$.

Proof. We may suppose that X is principal in M. Suppose that $aX \leq p1_M$ with $a \not\leq \sqrt{p}$. We will show that $(p1_M : L)X = 1_L$. Suppose that there exists a maximal element $q \in L$ such that $(p1_M : L)X \leq q$. By theorem 7, we have two cases.

Case 1. If there exists a compact element $q_a \in L$ with $q_a \not\leq q$ such that $0_M = q_aX$, then $q_a \leq (0_M : L)X \leq (p1_M : L)X \leq q$. This is a contradiction.

Case 2. If there exists a principal element $Y \in M$ and a compact element $b \in L$ with $b \not\leq q$ such that $b_1M \leq Y$, then $bX \leq b_1M \leq Y$. Since Y is principal, we have $bX = (bX : L)Y$. Put $(bX : L)Y = s$. Then $abX = asY$. Since Y is join-principal, it follows that $(asY : L)Y = as \lor (0_M : L)Y$. Since Y is meet-principal, we have $abX = (abX : L)Y$. Put $c = (abX : L)Y$. Since $cY = abX \leq bp1_M \leq pY$, it follows that $c \lor (0_M : L)Y = (cY : L)Y \leq (pY : L)Y = p \lor (0_M : L)Y$. Since $b(0_M : L)1_M = (0_M : L)1_M = (0_M : L)Yb_1M \leq (0_M : L)Y = 0_M$, we have $b(0_M : L)Y \leq (0_M : L)1_M \leq p$. Hence $bc \lor b(0_M : L)Y \leq bp \lor b(0_M : L)Y \leq p$. Therefore, $bc \leq p$. On the other hand, $c = (abX : L)Y = (asY : L)Y = as \lor (0_M : L)Y$ and so $abX \leq abY \lor b(0_M : L)Y = bc \leq p$.

If $b \leq \sqrt{p}$, since b is compact, we obtain $b \leq a_1 \lor a_2 \lor \ldots \lor a_m$ such that $a_i \leq p$.
for each \(i = 1, \ldots, m \). For \(k = n_1 + n_2 + \ldots + n_m \), we have \(b^k \leq a_1^k \vee a_2^k \vee \ldots \vee a_m^k \leq p \). Then \(b^k \leq p \leq (p_1M :L X) \leq q \). Since \(q \) is maximal, we obtain \(b \leq q \). This is a contradiction. Therefore, \(b \not\subseteq \sqrt{p} \). Since \(a \not\subseteq \sqrt{p} \) and \(p \) is primary, we have \(a \leq p \). So, \(bX = sY \leq pY \leq p1M \) and therefore \(b \leq (p1M :L X) \leq q \). This is a contradiction.

1.25. Corollary. Let \(L \) be a CG-lattice and \(M \) be a PG-lattice \(L \)-module. Let \(M \) be a multiplication lattice \(L \)-module and \(N < 1_M \). Then the following condition are equivalent.

i) \(N \) is a primary element in \(M \).

ii) \((N :L 1_M) \) is a primary element in \(L \).

iii) There exists a primary element \(p \) in \(L \) with \((0_M :L 1_M) \leq p \) such that \(N = p1_M \).

Proof. i) \(\implies \) ii) \(\implies \) iii) : Clear.

iii) \(\implies \) i) : Let \(aX \leq N \) and \(X \not\subseteq N \) for \(a \in L, X \in M \). Since there exists a primary element \(p \) in \(L \) with \((0_M :L 1_M) \leq p \) such that \(N = p1_M \), we have \(aX \leq p1_M \) and \(X \not\subseteq p1_M \). By theorem 8, \(a \leq \sqrt{p} \) and so \(a^k \leq p \) for some \(k > 0 \). Hence \(a^k \leq (p1M :L 1_M) = (N :L 1_M) \). □

REFERENCES

